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Abstract. The APPs running on smart devices have greatly enriched
people’s lives. However, they are collecting personally identifiable infor-
mation (PII) secretly. The unrestricted collection, processing and unsafe
transmission of PII will result in the disclosure of privacy, which cause
losses to users. With the advent of laws and regulations about data pri-
vacy such as GDPR, the major APP vendors have become more and
more cautious about collecting PII. However, the researches on detect-
ing privacy leakage under GDPR framework still receive less attention.
In this paper, we analyze the clauses of GDPR about privacy processing
and propose a method for PII leakage detection based on Association
Mining. This method assists us to find many hidden privacy leakages in
traffic data. Moreover, we design and implement an automated system to
detect whether the traffic data sent by the APPs reveals users’ PII. We
have tested 509 APPs of different categories in the Google Play Store.
The result shows that 76.23% of the APPs would collect and transmit
PII insecurely and 34.06% of them would send PII to third parties.
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1 Introduction

The widespread use of smart devices has led to the development of various APPs.
While providing users with services, these APPs also collect users’ personally
identifiable information (PII) [1, 4]. Researches show that the proportion of APPs
leaking personal data has increased exponentially in recent years, and significant
numbers of APPs leak personal data to third-parties [5, 14].

In order to regulate the data collection, transmission and processing behavior
of operators, many countries have enacted different laws and regulations, such
as EU General Data Protection Regulation (GDPR), American California Con-
sumer Privacy Act (CCPA) of 2018, and People’s Republic of China Network
Security Law. Among these laws and regulations, GDPR is considered as the
most important change in data privacy regulation in 20 years [12, 20].

The GDPR reshapes the way in which data is collected, transmitted and
processed. Compared with previous laws, it expands the material and territorial
scope of protection, and is known as the most advanced and strict law on data
protection and privacy. With the implementation of the GDPR, it is necessary
to recheck the privacy leakage problem in APPs.
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Existing detection methods for APP privacy leakage include the following
two aspects: analyzing APPs and detecting traffic data. Analyzing APPs by
static or dynamic methods often results in high false positives, and it is difficult
to form an automated system [1, 4–8]. Detecting traffic data are mainly based on
string search and regular matching. Although precise PII strings can be detected,
there are still many potential privacy leakages if the APP developers deliberately
modify the keywords in the traffic data to evade detection [2, 3, 9–11].

In order to mine hidden information which cannot be shown by simple string
search and regular matching, we propose a novel detection method, association
mining based on the iterative key-value pair matching, to detect the APP pri-
vacy leakage under the GDPR environment. The main idea of this method is that
personal data such as personal identifier, device identifier and location informa-
tion on a single terminal will not be changed in an experimental environment.
Therefore, the associations between keys and values can be used to mine more
indirect associations among different keys and discover the hidden information.

The contributions of this paper are summarized as below:

– We analyze the GDPR clauses regarding the data collection, transmission,
and processing, and find out the differences from other privacy laws.

– We propose a novel detection method, association mining based on the iter-
ative key-value pair matching, to explore the potential privacy leakage issues
hidden in traffic.

– We implement a privacy leakage detection system based on association min-
ing and detect the top 509 Android APPs in Google Play Store. The result
shows that 76.23% of the APPs are collecting and transmitting privacy data
insecurely, and 34.06% will send PII to third parties at least once;

The rest of the paper is organized as follows. Section 2 lists related works
about privacy leakage detection. Section 3 gives the interpretation of GDPR
and puts forward the subjects of study. Section 4 introduces the methodology.
Section 5 gives the design and implementation of the privacy leakage detection
system. Section 6 evaluates the APPs in Google Play by our system. Section 7
concludes the paper.

2 Related Work

2.1 The analysis of APP Programs

As is mentioned above, the static analysis is a method of analyzing the program
file without executing it. The most popular static analysis techniques include
dataflow analysis, symbol execution and so on. Using static analysis methods,
we can reach each accessible branch of the program and track the data flow.
However, in actual works, many branches in a program are actually unreach-
able, which may cause false positives, and the dataflow-tracking may cause path
explosion, which will increase the number of calculations exponentially [1, 4–6].

Dynamic analysis means to analyze an APP when it is running on a real
or virtual device. During the process of analyzing, the analyst may use hook
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functions and debug tools to observe APP behaviors and data transmissions.
Sometimes, the analysts should modify or customize the systems, and a large
number of operations rely on manual works. Therefore, it is difficult to develop
an automated detection system, and the efficiency is relatively low [7, 8].

2.2 The analysis of traffic data

The detection of traffic data also falls into two ways: detecting traffic data from
Internet Service Providers (ISPs) and from a single terminal. The former is
usually a joint work completed by the analysts and the ISPs with techniques
including string search, regular expression matching, and machine learning. The
analysts aim to find personal data in traffic or to classify traffic packages as
privacy-sensitive ones or not. Huge amounts of data can be acquired from the
ISPs, but it is unable to distinguish if a package is generated by the specific APP,
and the numerous invalid packages may bring many uncertain interferences [11].

Detecting traffic data on a single terminal seems to be a better way. The
existing researches include TaintDroid developed by W. Enck et al [8], which
provides real-time privacy analysis using Android’s virtualized execution envi-
ronment. J. Ren et al. implemented a cross-platform privacy leakage detection
system Recon, and it shows privacy leakage during APPs running in a visual way
[3]. I. Reyes et al. tested 5,855 children’s apps on Google Play and found that
73% of them transmit sensitive data over the Internet [2]. The above works have
promoted the development of privacy leakage detection on a single terminal.
However, after analyzing plenty of traffic packages, we found that many of them
contain hidden privacy leakages, especially customized or ambiguous keywords
that can not be detected by previous methods.

2.3 The analysis based on the GDPR

As the GDPR was released recently, there are not many researches on it. Some
articles combined with the GDPR to detect privacy leakages mainly have two
ideas: one is to define the scope of the privacy according to the GDPR, then ap-
ply machine learning, string search and other methods to detect privacy leakages
during the execution of the APPs. For example, WB. Tesfay et al. subdivided
Privacy Sensitive Information (PSI) into 13 types such as Sexual orientation,
Relationship, Emotions and so on, and then use the semi-supervised machine
learning method to classify the unstructured texts from Twitter, and analyze
whether they contain PSI or not [17]; the other idea is to check the APPs’ com-
pliance with a certain clause of the GDPR. P. Ferrara et al. designed a method
of taint analysis to merges all sources of sensitive data, then reconstruct the data
flow, and finally generate a report of the GDPR analysis [18]. F. Kammller took
advantage of the Attack Trees to verify GDPR compliance and illustrated on
the example of a healthcare IoT [19].

The first of the above two ideas does not actually interpret the GDPR, nor
detect the specific clauses, and the second is essentially a static detection which
has the problem of path explosion. Our work will start with interpreting the
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specific GDPR clauses related to privacy leakages in mobile, and apply them to
make an automated detection of the APPs.

3 GDPR and Privacy Leakage Detection

The General Data Protection Regulation (GDPR) [20], passed by the European
Union in April 2016 and came into effect on May 2018, is a regulation with the
aim of strengthening personal data and privacy protection for residents of the
EU. With the implementation of GDPR, many APP vendors have adjusted their
privacy policies and become more cautious in collecting and processing privacy.

3.1 Scope and definition

Chapter 1 Article 3 of GDPR stipulates the territorial scope, it applies to the
personal data controllers and processors in the EU, wherever they work. APPs
storing or processing personal data of the EU citizens, regardless of whether they
have businesses in the EU, must meet with the GDPR [20].

Chapter 1 Article 4 of GDPR defines several keywords. ‘Personal data’ in-
cludes the name, identification number, address, an online or social identifier of
a natural person. By processing ‘personal data’, the individual’s performance,
economic status, health, personal preferences, interests, reliability, behavior, lo-
cation or whereabouts, etc., collectively called ‘profiling’, can be evaluated. In
mobile, ‘personal data’ usually includes the following parts:

– Personal identifier (PI): name, gender, date of birth, email address, etc.
– Device identifier (DI): network, hardware information, phone number, etc.
– Location information: longitude, latitude, base station information, etc.

3.2 Data collection and secure transmission

Chapter 2 Article 6 of GDPR states that the legality of processing, including
collection, storage, modification, transmission, etc., must first satisfy the condi-
tion that ‘the data subject has given consent’. When installed or running, the
APP may apply for many unnecessary permissions and collect irrelevant users’
personal data, which violates the GDPR.

In terms of data transmission, Chapter 4 Article 32 stipulates that measures
such as anonymization and encryption should be adopted to ensure security
when processing personal data. If the APP transmits personal data using plain
text or a simple encryption algorithm, users’ information would be easily stolen.

3.3 Third-party privacy disclosure

It is clarified in Article 13 of Chapter 3 that ‘when collecting personal data,
the APP should provide with the identity details of the data controller, and the
purposes as well as the legal basis for the processing, and the recipients of the
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personal data’. APPs may send data to third parties for reasons such as remote
calls, information collection, etc., and this further increases the risk of privacy
disclosure. From the terms of the GDPR, the behavior that APPs transmit
personal data to third parties without users’ explicit knowledge, violates the
regulations of the GDPR.

4 Methodology

4.1 Data Extraction

In mobile, most of the APPs transmit data through the HTTP/HTTPS protocol.
The substance of privacy leakage detection is analyzing specific HTTP/HTTPS
packages in the network. Fig. 1 shows a typical HTTPS request package. Three
sections in request packages, i.e., (a) the request line, (b) the Referer header field
and Cookie header field, and (c) the request data, may contain a large amount of
valid personal information, as they are used as the carriers of request parameters
or APP data.

POST https://lf.xxxxxx.com/pgc/ma/
?cityid=361&tengxun_new&aid=1&max_behot_time= HTTP/1.1
Host: lf.xxxxxx.com
Connection: keep-alive
Accept: application/json, text/javascript
User-Agent: Mozilla/5.0 (Linux; Android 4.4.2; MI 6 Build/NMF26X)
Referer: https://lf.xxxxxx.com/user/profile/native_index/
?user_id=2935892161&is_following=0

data=%7B%22bssid=28%3AC2%3ADD%3A4D%3AFC%3AA9%2C%22location%22%3Atrue%2C
%22phone%22%3Atrue%2C%22storage%22%3Atrue%7D%2C%22night_mode%22%3A%2C%2
2apn_notify%22%3A1%2C%22switch_domain%22%3A0%2C%22video_nowifi_notice_m
ode%22%3A0%2C%22refresh_mode%22%3A0%2C%22comment_mode%22%3A0

(a)

(b)

(c)

Fig. 1. Example of HTTPS packages.

The contents of the Referer header field and the request header both consist
of a domain name and several parameters. The format of parameters is key-
value pairs like ‘key1=value1&key2=value2&key3=value3&...’, where the equal
sign (=) is an assignment character, and the ampersand (&) is a connector. The
key is a name defined by developers, while the value is its corresponding content.
In most cases, the actual meaning of the key value can be inferred by the name.

The cookie field and request data contain the cache information and form
information sent by the APP. Although having no fixed assignment characters
and connectors, they usually appear as key-value pairs. Valid key-value pairs
can also be extracted as long as the assignment characters and connectors are
effectively recognized.
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4.2 Association Mining

In general, a key can express its actual meaning, so analysts can examine whether
the key carries personal data or not [10]. However, after analyzing a large amount
of traffic data, we find that it is impossible to filter all the packages containing
personal data through common keys. In some cases, the developer deliberately
modifies the key in order to evade the detection. Thus, simple common keys
matching cannot accurately infer whether a package carries personal data. For
example, the key-value pair ‘bssid=28%3AC2%3ADD%3A4D%3AFC%3AA9’ in
Fig. 1 is actually the MAC address rather than a Basic Server Set id. In this
case, such APPs can leak a large amount of privacy without being noticed.

To address this problem, we propose the key-value association mining. Its
main idea is that: (a) pre-set a collection of keys as a key set; (b) collect and
analyze traffic data for a large number of APPs on a single terminal, extract
all key-value pairs; (c) for each key in key set, extract the associated values in
all key-value pairs to expand the value set; (d) for each value in the value set,
extract the associated keys in all key-value pairs, expand the key set and remove
duplication; (e) repeat (c) (d) until the key set and the value set no longer grow,
and the matching is completed.

The main assumption of this method is that personal data such as the per-
sonal identifier, device identifier and location information on a single terminal
in a session will not be changed. So the associations between keys and values
are used to discover more indirect associations among different keys, and thus
enlarge the coverage of privacy leakage detection. As shown in Fig. 2, the key
‘latitude’ finally matches a key-value pair of ‘cityid=24’ which can not be easily
found through common methods.

latitude location cityid

22.62159 24

Fig. 2. The process of association.

5 System Design and Implementation

We design and implement our system prototype on Android OS, which is running
on more than 85% smart devices. We setup our detection system on Android Em-
ulators to automatically examine APPs’ privacy leakage. The detection system
includes three modules: APP Crawler, Automation Platform, and PII Detector.
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Fig. 3. Privacy leakage detection system.

5.1 APP Crawler

The APP Crawler is responsible for collecting APPs from APP stores (e.g.,
Google Play), and storing them by categories. Robustness and parallelism are
considered when crawling, so techniques such as error handling and multi-threading
are used in the implementation.

In our experiments, the Crawler starts with reading the APP category names
and links on the main page of Google Play. Then for each category, it goes to
sub-pages and downloads the top 20 APPs of each category. The automation
was implemented by the Beautiful Soup library1 in Python. In the end, we have
downloaded 509 APPs of 27 categories from Google Play and saved them with
their package names.

5.2 Automation Platform

The Automation Platform is responsible for installing, running and uninstalling
the APPs. It would manipulate user interface for 15 minutes, capturing and
saving the traffic data. The platform must ensure that only one APP is running
at a time in order to eliminate interference from the other APPs. APPs connect
to the Internet through a Man-in-the-Middle (MIM) proxy, while the traffic
capture tool working on the proxy collects traffic data for further analysis.

APPs Runtime Emulation. We use Yeshen Emulator2 in our prototype.
Yeshen Emulator is a popular Android emulator that can customize a virtual
Device id, SIM number, IMEI, IMSI and other private parameters of Android
OS. It can also set virtual GPS data. ADB (Android Debug Bridge) debugging
tools are integrated into Yeshen Emulator and we use the ADB Monkey tool to
send some pseudo-random user events (such as clicking, returning, back to the
desktop, etc.) to emulate UI operations.

1 https://www.crummy.com/software/BeautifulSoup/
2 https://www.yeshen.com
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Traffic Data Capture. We capture traffic data by Fiddler23, which integrates
the functions of MIM proxy, traffic interception, and HTTPS decryption. We
only need to store the traffic data for the APPs being tested, so we want to
discard the traffic data not generated from the emulator (e.g., traffic data from
other hosts in LAN or physical machines) and traffic data generated by Android
system APPs and pre-installed APPs in the emulator. So we set Fiddler2 to filter
traffic packages in the network and only save packages by Yeshen Emulator. Then
we run ‘iptables firewall’ through the ADB shell, set firewall rules to prevent the
other APPs from connecting the Internet.

5.3 PII Detector

After previous steps, we now have a large number of traffic packages, which are
composed of a request line, header fields, and request data. First we need to
extract the valid data and convert them into key-value pairs. Then we generate
the complete key set and value set, and detect whether a package leaks PII or
not. Finally, we make statistical analyses for quantifying privacy leakages.

Pre-processing. We extract the three valid sections as mentioned above and
divide them into key-value pairs by different connectors. The key-value pairs
follow the pattern of ‘key(assignment character)value(connector)key(assignment
character)’. The request line and the Referer field use the equal sign (=) and the
ampersand (&) as the assignment character and connector respectively, while
the cookie field and request data have no fixed formats and characters. Some
common characters we have seen are :=/ (assignment characters) and ,;&+—
(connector). Therefore, we use a simple statistical method to solve the challenge,
that is, counting the numbers of assignment characters or connectors respectively
in the sections, and selecting the most ones.

Besides, there are many binary data and other invisible characters, as well as
a lot of newline characters, brackets, quotation marks in a real traffic package.
In addition, the generated key-value pairs contain many invalid data, such as
random strings, domain names, etc. These data are filtered and removed in pre-
processing as well.

Privacy Pairs Generation. We conduct association mining as described in
Section 4.2 to generate more complete key set and value set and expand them
until they cannot grow anymore. In order to avoid the explosion of associated
keys/values that are added into the sets, we only expend frequent keys/values
whose number of appearance is larger than a threshold (=3 in our experiment)
in each round. This can avoid a large number of random keys/values that are
not related to user privacy.

We set the initial key set with some common device identifier and location
information keywords including ‘phoneNumber’, ‘imei’, ‘imsi’, ‘androidid’, ‘mac’,

3 https://www.telerik.com/fiddler
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Fig. 4. The distribution of privacy-sensitive key-value pairs in packages.

‘longitude’, ‘latitude’. At the end of the expansion, many other keys related to PII
or sensitive data in the key set, such as ‘system info’, ‘deviceid’, ‘devicename’,
‘providceId’, ‘city i’, ‘areaId’, ‘mypos’, ‘adCode’, are found with our methods
in the experiment. Some keys/values that are not related to privacy may be
included. In this case, we filter and remove values which are obviously not related
to user privacy.

In the end, we analyze the privacy leakage of APPs by the key set and value
set. When the key and the value of a key-value pair are both in the set, the pair
is evaluated as a privacy pair. A package which includes one or more privacy
pair is classified as a privacy-sensitive one.

6 Evaluation

In our experiments, we have crawled 509 APPs of 27 categories from Google
Play, captured 169,326 packages, and extracted 629,217 valid key-value pairs.
The overall analysis result shows that the privacy-sensitive key-value pairs have
appeared in about 34.0% of all captured packages and on average each one carries
3.716 pieces of privacy, as shown in Fig. 4.

Unconsented Data Collection. For the analysis of APPs, we find that
388 out of the 509 APPs transmit personal data over the Internet, accounting
for 76.23%. These personal data are captured and transmitted in our automated
detection system without ‘the data subject’s consent’, so the APPs do not con-
form to Chapter 2 Article 6 of GDPR. This proportion is higher than 61.9% or
63.3% by the other existing methods [6, 16], which shows the effectiveness of our
method. Among them, APP categories such as Jobs, Cars, Medical and News
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Fig. 5. Categories ranking in transmitting personal data.

transmit more personal data, while Novel, Personalization, Audio and Enter-
tainment APPs seem more secure, as shown in Fig. 5.

Unencrypted Personal Data Transmission. Device identifiers (e.g., an-
droid id, IMSI, etc.) are observed to be the most personal data collected by
APPs. The APP vendors leverage them to identify devices and target ads to
users. When transmitting personal data, more than 39% APPs use the unen-
crypted HTTP protocol, though decreased 9% in the past 2 years, which are
considered insecure and violate Chapter 4 Article 32 of GDPR. The different
personal data and their transmitting methods are shown in Table 1.

Table 1. The different personal data and their transmitting methods.

Type HTTP HTTPS Total

Device ID 50408(23.56%) 65424(30.38%) 115832(54.14%)
Network Info 11534(5.39%) 30268(14.15%) 41802(19.54%)

Location 21622(10.11%) 34394(16.08%) 56016(26.18%)
Others 92(0.04%) 192(0.09%) 284(0.13%)

Total 83656(39.10%) 130278(60.90%) 213934(100%)

Third-party Data Disclosure. Sending personal data to a third-party
without consent is likely to violate Article 13 of Chapter 3 of GDPR. We extract
the SLD (second-level domain) from the Host header filed of a package, then
judge whether the host is a third-party or not according to the attribution of
SLD. We find that 173 of the 509 APPs have sent personal data to third-parties,
accounting for 34.06%. The Keywords that are most concerned by third-parties
are listed in Table 2.

Power of Association Mining. After analyzing the key set and value set
generated in our association mining, we find that many different keys have the
same values, which are their actual meanings, as shown in Table 3. Analysts
would miss a lot of privacy leakages if they only search for sensitive key names
in network traffic.
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Table 2. The Keywords that are most concerned by third-parties.

Keyword Frequency Keyword Frequency

imei 19204 device type 7891
device id 11955 imsi 6266

os 10644 lat 6095
os version 9176 lng 6063

uuid 8921 mac 5610

Table 3. Actual meanings and related keys appeared in packages.

Actual meaning Related keys

imsi net oper, sim serial, iccid, AD9, deviceid
android id aid, deviceId, distinct id, did, openudid, uuid

imei uuid, deviceToken, deviceId, devkey, meid
mac mac address, device id, bssid, m

longitude lng, lng pos, currentLng, x1
latitude lat, lat pos, mypos, y1, geoia, latlng, X1, Coordinate

7 Conclusion

While changing people’s lives, the APPs running on smart devices are collecting
our privacy. With the implementation of laws and regulations such as GDPR,
this problem has not been greatly improved. Some APP developers are even
deliberately concealing the transmission of users’ PII in traffic data, and it is
difficult to detect this case by previous methods. In this paper, we propose
a privacy leakage detection method based on Association Mining, design and
implement a detection system, then apply it to the APPs in Google Play Store,
and the result is as we expected.

We should know that the key-value matching can extend the boundary of
privacy leakage detection and reduce false negatives, but it also increases false
positives to a certain extent. By filtering key set and value set we can slow down
the occurrence of false positives, but it cannot be completely avoided.

In future research, Combining the static or dynamic detection method with
the analysis of data flow to infer the actual meanings of keys, the effect may be
further improved.
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